Package: tensorBF 1.0.2

tensorBF: Bayesian Tensor Factorization

Bayesian Tensor Factorization for decomposition of tensor data sets using the trilinear CANDECOMP/PARAFAC (CP) factorization, with automatic component selection. The complete data analysis pipeline is provided, including functions and recommendations for data normalization and model definition, as well as missing value prediction and model visualization. The method performs factorization for three-way tensor datasets and the inference is implemented with Gibbs sampling.

Authors:Suleiman A Khan [aut, cre], Muhammad Ammad-ud-din [aut]

tensorBF_1.0.2.tar.gz
tensorBF_1.0.2.zip(r-4.5)tensorBF_1.0.2.zip(r-4.4)tensorBF_1.0.2.zip(r-4.3)
tensorBF_1.0.2.tgz(r-4.5-any)tensorBF_1.0.2.tgz(r-4.4-any)tensorBF_1.0.2.tgz(r-4.3-any)
tensorBF_1.0.2.tar.gz(r-4.5-noble)tensorBF_1.0.2.tar.gz(r-4.4-noble)
tensorBF_1.0.2.tgz(r-4.4-emscripten)tensorBF_1.0.2.tgz(r-4.3-emscripten)
tensorBF.pdf |tensorBF.html
tensorBF/json (API)
NEWS

# Install 'tensorBF' in R:
install.packages('tensorBF', repos = c('https://suleimank.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 stars 9 scripts 196 downloads 1 mentions 9 exports 1 dependencies

Last updated 6 years agofrom:bf051a0197. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 17 2025
R-4.5-winOKFeb 17 2025
R-4.5-macOKFeb 17 2025
R-4.5-linuxOKFeb 17 2025
R-4.4-winOKFeb 17 2025
R-4.4-macOKFeb 17 2025
R-4.3-winOKFeb 17 2025
R-4.3-macOKFeb 17 2025

Exports:getDefaultOptsnormFiberCenteringnormSlabScalingplotTensorBFpredictTensorBFreconstructTensorBFtensorBFundoFiberCenteringundoSlabScaling

Dependencies:tensor